
Data Structures

Lecture 6 :

The Queues

Assist. Prof. Dr Abdul Hadi Mohammed

2

The Queues

A queue is logically a first in first out (FIFO or first come first serve)

linear data structure.

The concept of queue can be understood by our real life problems. For

example a customer come and join in a queue to take the train ticket at

the end (rear) and the ticket is issued from the front to end of queue. That

is, the customer who arrived first will receive the ticket first. It means the

customers are serviced in the order in which they arrive at the service

centre.

3

The Queues

It is a homogeneous collection of elements in which new elements are

added at one end called REAR, and the existing elements are deleted

from other end called FRONT. The basic operations are:

1. Insert (or add) an element to the queue (push)

2. Delete (or remove) an element from a queue (pop).

Push operation will insert an element to queue, at the rear end, by

incrementing the array index. Pop operation will delete from the front end

by decrementing the array index and will assign the deleted value to a

variable.

4

Following figure will illustrate the basic operations on queue.

The Queues

5

The Queues

6

The Queues

7

The Queues

Total number of elements present in the queue

is front-rear+1, when implemented using arrays, right?

8

Queue can be implemented in two ways:

1. Using arrays (static)

2. Using pointers (dynamic)

Let us discuss underflow and overflow conditions when a queue is

implemented using arrays. If we try to pop an element from queue when

it is empty, underflow occurs. It is not possible to delete any element

when there is no element in the queue.

Suppose maximum size of the queue is 50. If we try to push an element

to queue, overflow occurs. When queue is full it is naturally not possible

to insert any more elements

The Queues

9

6.1. ALGORITHM FOR QUEUE OPERATIONS

Let Q be the array of some specified size say SIZE

10

The Queues

6.1.1. INSERTING AN ELEMENT INTO THE QUEUE

1. Initialize front = –1 rear = –1 // front = 0 rear = –1

2. Input the value to be inserted and assign to variable “data”

3. If (rear >= SIZE – 1)

(a) Display “Queue Overflow”

(b) Exit

4. Else

(a) rear = rear +1

(b) Q[rear] = data

5. Exit

11

6.1.2. DELETING AN ELEMENT FROM QUEUE

1. If (front >= rear) // front = -1

(a) front = 0, rear = –1

(b) Display “The queue is empty”

(c) Exit

2. Else

(a) data = Q[front]

(b) front = front +1

3. Exit

The Queues

1. If (front = -1)

(a) Display “The queue is empty”

(b) Exit

2. Else

(a) data = Q[front]

(b) front = front +1

3. Exit

12

//PROGRAM TO IMPLEMENT QUEUE USING:

1- ARRAYS

2- Pointers

Assignment within Lab

The Queues

13

6.2. OTHER QUEUES

There are three major variations in a simple queue. They are

1. Circular Queue

2. Double Ended Queue (DE-Queue)

3. Priority Queue

Priority queue is generally implemented using linked list, which is

discussed in Ch 5 sec 13. The other two queue variations are discussed in the

following sections.

The Queues

14

6.3. CIRCULAR QUEUE

In circular queues the elements Q[0],Q[1],Q[2] Q[n – 1] is represented in a

circular fashion with Q[1] following Q[n]. A circular queue is one in which the

insertion of a new element is done at the very first location of the queue if

the last location at the queue is full.

Suppose Q is a queue array of 6 elements. Push and Pop operation can be

performed on circular. The following figures will illustrate.

The Queues

15

The Queues

A circular queue after inserting 18,7,42,67,

16

The Queues

A circular queue after popping 18, 7

17

After inserting an element at last location Q[5], the next element will be

inserted at the very first location (i.e., Q[0]) that is circular queue is one

in which the first element comes just after the last element.

The Queues

18

The Queues

A circular queue after pushing 30,47,14

19

At any time the position of the element to be inserted will be calculated

by the relation Rear = (Rear + 1) % SIZE After deleting an element from

circular queue the position of the front end is calculated by the relation

Front= (Front + 1) % SIZE After locating the position of the new element

to be inserted, rear, compare it with front.

The Queues

20

Algorithm for Inserting an element to circular Queue

1. Initialize front = – 1; rear = – 1

2. rear = (rear + 1) % SIZE

3. If (rear is equal to front) // or (front = rear + 1)

(a) Display “Queue is full” (b) Exit

4. Else

(a) Input the value to be inserted and assign to variable “data”

5. If (front is equal to – 1)

(i) front = 0 (ii) rear = 0

6. Q[rear] = data

7. Repeat steps 2 to 6 if we want to insert more elements

8. Exit

The Queues

21

Algorithm for Deleting an element from a circular queue

1. If (front is equal to – 1)

(a) Display “Queue is empty” (b) Exit

2. Else

(a) data = Q[front]

3. If (front is equal to rear)

(a) front = –1 (b) rear = –1

4. Else

(a) front = (front +1) % SIZE

5. Repeat the steps 1 to 4 if we want to delete more elements

6. Exit

The Queues

22

The Queues

void circular_queue::insert()
{

int data;

//Checking for overflow condition

if ((front == 0 && rear == MAX-1) || (front == rear + 1))
{

cout<<“\nQueue Overflow \n”;

return;

}

if (front == –1) /*If queue is empty */
{

front = 0;

rear = 0;

}

else

if (rear == MAX-1) /*rear is at last position of queue */

rear = 0;
else

rear = rear + 1;
cout<<“\nInput the element for insertion in queue:”;

cin>> data;

cqueue_arr[rear] = data;
}/*End of insert()*/

23

The Queues

A circular queue after pushing 30, 47, 14

24

The Queues

void circular_queue::del()
{

//Checking for queue underflow

if (front == –1)

{

cout<<“\nQueue Underflow\n”;

return;

}

cout<<“\n Element deleted from queue is:”<<cqueue_arr[front]<<“\n”;
if (front == rear)

{

front = –1;

rear = –1;
}

else

if(front == MAX-1)

front = 0;

else

front = front + 1;
}/*End of del()*/

25

// PROGRAM TO IMPLEMENT CIRCULAR

QUEUE USING ARRAY

within the lab

The Queues

26

6.4. DE-QUEUES

A dequeue is a homogeneous list in which elements can be added or

inserted (called push operation) and deleted or removed from both the

ends (which is called pop operation), i. e; we can add a new element at

the rear or front end and also we can remove an element from both

front and rear end. Hence it is called Double Ended Queue.

The Queues

27

The Queues

A dequeue

28

There are two types of deque depending upon the restriction

to perform insertion or deletion operations at the two ends.

They are:

1. Input restricted de-queue

2. Output restricted de-queue

The Queues

29

An input restricted, which allows insertion at only 1 end, rear end, but

allows deletion at both ends, rear and front end of the lists.

An output-restricted, which allows deletion at only one end, front end, but

allows insertion at both ends, rear and front ends of the lists.

The possible operation performed on deque is

1. Add an element at the rear end

2. Add an element at the front end

3. Delete an element from the front end

4. Delete an element from the rear end

Only 1st, 3rd and 4th operations are performed by input-restricted deque

and 1st, 2nd and 3rd operations are performed by output-restricted deque.

The Queues

30

6.4.1. ALGORITHMS FOR INSERTING AN ELEMENT

INSERT AN ELEMENT AT THE RIGHT SIDE OF THE DE-QUEUE

1. Input the DATA to be inserted

2. If ((left == 0 && right == MAX–1) || (left == right + 1))

(a) Display “Queue Overflow” (b) Exit

3. If (left == –1)

(a) left = 0 (b) right = 0

4. Else

(a) if (right == MAX –1)

(i) right= 0

(b) else

(i) right = right+1

5. Q[right] = DATA

6. Exit

The Queues

31

INSERT AN ELEMENT AT THE LEFT SIDE OF THE DE-QUEUE

1. Input the DATA to be inserted

2. If ((left == 0 && right == MAX–1) || (left == right+1))

(a) Display “Queue Overflow” (b) Exit

3. If (left == – 1)

(a) left = 0 (b) right = 0

4. Else

(a) if (left == 0)

(i) left = MAX – 1

(b) else

(i) left = left – 1

5. Q[left] = DATA

6. Exit

The Queues

32

6.4.2. ALGORITHMS FOR DELETING AN ELEMENT

DELETE AN ELEMENT FROM THE RIGHT SIDE OF THE DE-QUEUE

1. If (left == – 1)

(a) Display “Queue Underflow” (b) Exit

2. DATA = Q [right]

3. If (left == right)

(a) left = – 1 (b) right = – 1

4. Else

(a) if(right == 0)

(i) right = MAX-1

(b) else

(i) right = right-1

5. Exit

The Queues

33

DELETE AN ELEMENT FROM THE LEFT SIDE OF THE DE-QUEUE

1. If (left == – 1)

(a) Display “Queue Underflow” (b) Exit

2. DATA = Q [left]

3. If(left == right)

(a) left = – 1 (b) right = – 1

4. Else

(a) if (left == MAX-1)

(i) left = 0

(b) Else

(i) left = left +1

5. Exit

The Queues

34

6.5. APPLICATIONS OF QUEUE

1. Round robin techniques for processor scheduling.

2. Printer server routines (in drivers) are designed using queues.

3. All types of customer service software (like Railway/Air ticket

reservation).

The Queues

