
Lecture 2
Assist. Prof. Dr. Abdul Hadi Mohammed

Strings

68

 string: A sequence of text characters in a program.
 Strings start and end with quotation mark " or apostrophe ' characters.
 Examples:

"hello"
"This is a string"
"This, too, is a string. It can be very long!"

 A string may not span across multiple lines or contain a " character.
"This is not
a legal String."

"This is not a "legal" String either."

 A string can represent characters by preceding them with a backslash.
 \t tab character
 \n new line character
 \" quotation mark character
 \\ backslash character

 Example: "Hello\tthere\nHow are you?"

Strings

69

Indexes
 Characters in a string are numbered with indexes starting at 0:

 Example:
name = "A. Alayen"

 Accessing an individual character of a string:
variableName [index]

 Example:
print (name, "starts with", name[0])

Output:
A. Alayen starts with A

index 0 1 2 3 4 5 6 7

character A . A l a y e

8

n

70

String properties
- number of characters in a string
(including spaces)

- lowercase version of a string
- uppercase version of a string

 len(string)

 str.lower(string)
 str.upper(string)

 Example:
name = "Martin Douglas Stepp"
length = len(name)
big_name = name.upper()
print big_name, "has", length, "characters"

Output:
MARTIN DOUGLAS STEPP has 20 characters

()

71

 input : Reads a string of text from user input.
 Example:
name = input("Howdy, pardner. What's yer name? ")
print (name, "... what a silly name!")

Output:
Howdy, pardner. What's yer name? Paris Hilton
Paris Hilton ... what a silly name!

input

72

Text processing
 text processing: Examining, editing, formatting text.

 often uses loops that examine the characters of a string one by one

 A for loop can examine each character in a string in sequence.

 Example:
for c in "booyah":
 print (c)

Output:
b
o
o
y
a
h

73

Strings and numbers
 ord(text) - converts a string into a number.

 Example: ord("a") is 97, ord("b") is 98, ...

 Characters map to numbers using standardized mappings such as
ASCII and Unicode.

 chr(number) - converts a number into a string.
 Example: chr(99) is "c"

 Exercise: Write a program that performs a rotation cypher.
 e.g. "Attack" when rotated by 1 becomes "buubdl"

74

File processing
 Many programs handle data, which often comes from files.

 Reading the entire contents of a file:
with open("bankaccount.txt", "r", encoding="utf-8") as f:

 file_text = f.read()

with: ensures the file is properly closed even if
there's an error.

"r": read mode (optional because it's the default).

encoding="utf-8": makes encoding explicit, good
practice for portability.

75

Line-by-line processing
 Reading a file line-by-line:

for line in open("filename"):
 statements

Example:
count = 0

with open("bankaccount.txt", "r", encoding="utf-8") as f:

 for line in f:

 count += 1
print("The file contains", count, "lines.")

 Exercise: Write a program to process a file of DNA text, such as:
ATGCAATTGCTCGATTAG

 Count the percent of C+G present in the DNA.

76

Bank Account Management
Design a simple console-based banking application to manage

customer accounts stored in a text file.
 The application should include the following features:

1.Reading from and writing to files using Python.

2.Storing account data in dictionaries for efficient access and

management.

3.Performing basic banking operations such as:

4.Organizing code into functions for better readability and

modularity.

• Depositing funds
• Withdrawing funds
• Checking account balances

77

File Format: bankaccount.txt
This file stores account data in CSV format:

AccountNumber,AccountHolder,AccountType,Balance
1001,Ali Hassan,Savings,1500.0
1002,Lina Ahmed,Checking,2300.5

Each row represents one account.

78

Load Accounts Function
def load_accounts(file_path):
 accounts = {}
 with open(file_path, 'r') as file:

next(file) # Skip the first line
for line in file:

parts = line.strip().split(',')
if len(parts) != 4:

print("Error in file format.")
continue

 account_number, account_holder, account_type, balance = parts

accounts[account_number] = {
"AccountHolder": account_holder,
"AccountType": account_type,
"Balance": float(balance)

}
 return accounts

79

Get, Deposit and Withdraw
def get_balance(accounts, account_number):
 return accounts[account_number]["Balance"]

def deposit(accounts, account_number, amount):
 accounts[account_number]["Balance"] += amount

def withdraw(accounts, account_number, amount):
 if accounts[account_number]["Balance"] >= amount:

accounts[account_number]["Balance"] -= amount
 else:

print("Insufficient funds.")

80

Save and Print Function
def save_accounts(file_path, accounts):
 with open(file_path, 'w') as file:

file.write("AccountNumber,AccountHolder,AccountType,Balance\n")
for account_number, details in accounts.items():

file.write(f"{account_number},{details['AccountHolder']},
{details['AccountType']},{details['Balance']}\n")

def print_accouts(accounts):
 if accounts:

print(f"{'AccountNumber':<15}{'AccountHolder':<20}
{'AccountType':<15}{'Balance':<10}")

print("-" * 60)
for account_number, details in accounts.items():

print(f"{account_number:<15}{details['AccountHolder']:<20}
{details['AccountType']:<15}{details['Balance']:<10.2f}")

81

Example of usage App
file_path = "bankaccount.txt"
accounts = load_accounts(file_path)
print_accouts(accounts)
deposit(accounts, "1001", 100.0)
withdraw(accounts, "1001", 250.0)
save_accounts(file_path, accounts)
print_accouts(accounts)

	Blank Page

