S & python

More Data Types

Everything is an object

= Everything means
everything,
including functions

and classes (more
on this later!)

= Data type is a
property of the
object and not of
the variable

P e

>>> X =7
>>> X

7

>>> X = 'hello’
>>> X
'hello’
>>>

Numbers: Integers

l ‘il

= Integer - the
equivalent of a C long

= Long Integer - an
unbounded integer
value.

>>> 132224
132224

>>> 132323 **
2

17509376329L
>>>

= int(x) converts X to
an integer

= float(x) converts X
to a floating point

= The interpreter
shows
a lot of digits

>>> 1.,23232
1.2323200000000001
>>> print 1.23232
1.23232

>>> 1.3E7
13000000.0

>>> int(2.0)

2

>>> float(2)

2.0

Numbers: Complex

I

= Built into Python

= Same operations are
supported as integer
and float

>>> X = 3 + 2]
>>>Yy = -1]j
>>> X+ Y
(3+1j)

>>> X *y
(2-3]))

String Literals

=+ is overloaded to do
concatenation

>>> X = 'hello’

>>> X = X + ' there'
>>> X

'hello there'

I

String Literals

= Can use single or double quotes, and
three double quotes for a multi-line
string

>>> 'l am a string’
'l am a string’
>>> "So am I!"
'So am I!"

Substrings and Methods

>>> s ='012345'
>>> s[3]
13

>>> s[1:4]
'123"

>>> s[2:]
'2345'

>>> s[:4]
'0123'

>>> s[-2]
140

(String) - returns the
number of characters in
the String

(Object) — returns a
String representation of
the Object

>>> |len(Xx)
6

>>>
str(10.3)

'10.3’

String Formatting

= Similar to C’s printf

= <formatted string> % <elements to
insert>

= Can usually just use %s for everything,
it will convert the object to its String
representation.

>>> "0One, %d, three" % 2
'One, 2, three'

>>> "%d, two, %s" % (1,3)

'1, two, 3'

>>> "0ps two %s" % (1, 'three')
'1 two three'

>>>

e ——————

Types for Data Collection

List, Set, and Dictionary

e W s W ooy

Indexes Values Values Keys Values
. Rock
0 | Six Eggs @ Jazz YYZ — :Toronto Pearson}
1 | Milk DUB (London HeathrOWJ
2 | Flour Classical @ X :
LHR . Dublin Airport J
3 | Baking Powder @ Hip Hop

4 Bananas @

. =Ordered Pairs of values
—— sUnordered list

= Ordered collection of
data

= Data can be of
different types

= Lists are mutable

= Issues with shared
references and
mutability

= Same subset
operations as Strings

>>> x = [1,'hello’, (3 + 2j)]
>>> X

[1, 'hello’, (3+2j)]

>>> x[2]

(3+2])

>>> x[0:2]

[1, 'hello']

List Functions

= list.append(x)
= Add item at the end of the list.
= list.insert(i,x)
= Insert item at a given position.
= Similar to ali:i]=[X]
= list.remove(x)
= Removes first item from the list with value x
= list.pop(i)
= Remove item at position I and return it. If no index I is given then
remove the first item in the list.

= list.index(x)

» Return the index in the list of the first item with value x.
= list.count(x)

= Return the number of time x appears in the list

= list.sort()

= Sorts items in the list in ascending order
list.reverse()
. = Reverses items in the list

- -

_——

Lists: Modifying Content

=X[1] = a reassigns

= Since X and y point to

the ith element to the
value a

the same list object,
both are changed

= The method

also modifies the list

P e

>>>x =11,2,3]
>>>y =X

>>> x[1] = 15
>>> X

[1, 15, 3]

>>>y

[1, 15, 3]

>>> X.append(12)
>>>y

[1, 15, 3, 12]

I

Lists: Modifying Contents

>>>x =11,2,3]

= The method

modifies the list
and returns

= List addition
() returns a
new list

>>>y = X

>>> 7z = X.append(12)
>>> 7 == None

True

>>>y

[1, 2, 3, 12]

>>> X =X+ [9,10]
>>> X

[1, 2, 3, 12,9, 10]
>>>y

[1, 2, 3, 12]

>>>

Using Lists as Stacks

= YOU can use a list as a stack
>>> a — [llall, llbll, "C“,"d"]

>>> 3

[lal’ lbI, lCl, ldl]
>>> a.append('e")
>>> 3

[Iall 'bll 'C'I ICl'l 'e']
>>> a.pop()

e

>>> a.pop()

d'

>>>a = ["a", "b", "c"]
>>>

-

W Cyw————————

- -

= Tuples are immutable
versions of lists

= One strange point is
the format to make a
tuple with one
element:

*"is needed to

>>>x = (1,2,3)
>>> X[1:]

(2, 3)

>>>y = (2,)
>>>y

_1(2))

differentiatefrom the
mathematical
expression (2)

>> >

= A set is another python data structure that is an unordered
collection with no duplicates.

>>> setA=set(["a","b","c","d"])
>>> setB=set(["c","d","e","f"])
>>> "3" in setA

True

>>> "3" in setB

False

>>> setA - setB

{'a’, 'b'}

>>> setA | setB

{'a', 'c’, 'b', 'e', 'd", 'f'}
>>> setA & setB

{'c’, 'd'}

>>> setA N setB

{'a', 'b', 'e', 'f'}

>>>

I

Dictionaries

= A set of key-value pairs
= Dictionaries are mutable

>>> d= {'one’: 1, two' : 2, ‘three’: 3}
>>> d['three’]
3

Dictionaries: Add/Modify

= Entries can be changed by assighing to
that entry

>>> (

{1: 'hello’, 'two': 42, 'blah': [1, 2, 3]}
>>> d['two'] = 99

>>> (

{1: 'hello’, 'two': 99, 'blah': [1, 2, 3]}

Assigning to a key that does not exist
adds an entry

>>> d[7] = 'new entry’
>>> d

{1: 'hello’, 7: 'new entry', 'two': 99, 'blah': [1, 2, 3]}

Dictionaries: Deleting Elements

= The method deletes an element from a
dictionary
>>>d

l ‘il

{1: 'hello', 2: 'there', 10: 'world"'}
>>> del(d[2])

>>>d

{1: 'hello', 10: 'world"}

Iterating over a dictionary

>>>address={'Wayne': 'Young 678, 'John': 'Oakwood 345,
'Mary': 'Kingston 564'}

>>>for k in address.keys():
print(k,":", address[k])

Wayne : Young 678
John : Oakwood 345

Mary : Kingston 564
>>>

>>> for k in sorted(address.keys()):
print(k,":", address[k])

John : Oakwood 345
Mary : Kingston 564

. Wayne : Young 678
. >>>

I

Copying Dictionaries and Lists

= The built-in
function
will copy a list

= The dictionary
has a method
called

>>> 11 = [1]
>>> |2 = list(l1)
>>> |1[0] = 22
>>> |1

[22]

>>> |2

[1]

>>>d={1:10}
>>> d2 = d.copy()
>>> d[1] = 22
>>> d

{1: 22}

>>> d2

{1: 10}

Data Type Summary

e ——————

Integers: 2323, 3234L

Floating Point: 32.3, 3.1E2

Complex: 3 + 2j, 1j

Lists: | = [1,2,3]

Tuples: t = (1,2,3)

Dictionaries: d = {‘hello’ : ‘there’, 2 : 15}

= Lists, Tuples, and Dictionaries can store
any type (including other lists, tuples,
and dictionaries!)

= Only lists and dictionaries are mutable
= All variables are references

