

28

More Data Types

Everything is an object

 Everything means
everything,
including functions
and classes (more
on this later!)

 Data type is a
property of the
object and not of
the variable

>>> x = 7
>>> x
7
>>> x = 'hello'
>>> x
'hello'
>>>

Numbers: Integers

 Integer – the
equivalent of a C long

 Long Integer – an
unbounded integer
value.

>>> 132224
132224
>>> 132323 **
2
17509376329L
>>>

Numbers: Floating Point

 int(x) converts x to
an integer

 float(x) converts x
to a floating point

 The interpreter
shows
a lot of digits

>>> 1.23232
1.2323200000000001
>>> print 1.23232
1.23232
>>> 1.3E7
13000000.0
>>> int(2.0)
2
>>> float(2)
2.0

Numbers: Complex

 Built into Python
 Same operations are
supported as integer
and float

>>> x = 3 + 2j
>>> y = -1j
>>> x + y
(3+1j)
>>> x * y
(2-3j)

String Literals

 + is overloaded to do
concatenation >>> x = 'hello'

>>> x = x + ' there'
>>> x
'hello there'

String Literals
 Can use single or double quotes, and
three double quotes for a multi-line
string

>>> 'I am a string'
'I am a string'
>>> "So am I!"
'So am I!'

Substrings and Methods

>>> s = '012345'
>>> s[3]
'3'
>>> s[1:4]
'123'
>>> s[2:]
'2345'
>>> s[:4]
'0123'
>>> s[-2]
'4'

• len(String) – returns the
number of characters in
the String

• str(Object) – returns a
String representation of
the Object

>>> len(x)
6
>>>
str(10.3)
'10.3'

String Formatting
 Similar to C’s printf
 <formatted string> % <elements to
insert>

 Can usually just use %s for everything,
it will convert the object to its String
representation.

>>> "One, %d, three" % 2
'One, 2, three'
>>> "%d, two, %s" % (1,3)
'1, two, 3'
>>> "%s two %s" % (1, 'three')
'1 two three'
>>>

Types for Data Collection
List, Set, and Dictionary

List

Unordered list
Ordered Pairs of values

Lists
 Ordered collection of
data

 Data can be of
different types

 Lists are mutable
 Issues with shared
references and
mutability

 Same subset
operations as Strings

>>> x = [1,'hello', (3 + 2j)]
>>> x
[1, 'hello', (3+2j)]
>>> x[2]
(3+2j)
>>> x[0:2]
[1, 'hello']

List Functions
 list.append(x)

 Add item at the end of the list.
 list.insert(i,x)

 Insert item at a given position.
 Similar to a[i:i]=[x]

 list.remove(x)
 Removes first item from the list with value x

 list.pop(i)
 Remove item at position I and return it. If no index I is given then

remove the first item in the list.
 list.index(x)

 Return the index in the list of the first item with value x.
 list.count(x)

 Return the number of time x appears in the list
 list.sort()

 Sorts items in the list in ascending order
 list.reverse()

 Reverses items in the list

Lists: Modifying Content

 x[i] = a reassigns
the ith element to the
value a

 Since x and y point to
the same list object,
both are changed

 The method append
also modifies the list

>>> x = [1,2,3]
>>> y = x
>>> x[1] = 15
>>> x
[1, 15, 3]
>>> y
[1, 15, 3]
>>> x.append(12)
>>> y
[1, 15, 3, 12]

Lists: Modifying Contents

 The method
append
modifies the list
and returns
None

 List addition
(+) returns a
new list

>>> x = [1,2,3]
>>> y = x
>>> z = x.append(12)
>>> z == None
True
>>> y
[1, 2, 3, 12]
>>> x = x + [9,10]
>>> x
[1, 2, 3, 12, 9, 10]
>>> y
[1, 2, 3, 12]
>>>

Using Lists as Stacks

 You can use a list as a stack
>>> a = ["a", "b", "c“,”d”]
>>> a
['a', 'b', 'c', 'd']
>>> a.append("e")
>>> a
['a', 'b', 'c', 'd', 'e']
>>> a.pop()
'e'
>>> a.pop()
'd'
>>> a = ["a", "b", "c"]
>>>

Tuples

 Tuples are immutable
versions of lists

 One strange point is
the format to make a
tuple with one
element:

 ‘,’ is needed to
differentiate from the
mathematical
expression (2)

>>> x = (1,2,3)
>>> x[1:]
(2, 3)
>>> y = (2,)
>>> y
(2,)
>>>

Sets
 A set is another python data structure that is an unordered

collection with no duplicates.
>>> setA=set(["a","b","c","d"])
>>> setB=set(["c","d","e","f"])
>>> "a" in setA
True
>>> "a" in setB
False

Sets
>>> setA - setB
{'a', 'b'}
>>> setA | setB
{'a', 'c', 'b', 'e', 'd', 'f'}
>>> setA & setB
{'c', 'd'}
>>> setA ^ setB
{'a', 'b', 'e', 'f'}
>>>

Dictionaries

 A set of key-value pairs
 Dictionaries are mutable

>>> d= {‘one’ : 1, 'two' : 2, ‘three’ : 3}
>>> d[‘three’]
3

Dictionaries: Add/Modify

>>> d
{1: 'hello', 'two': 42, 'blah': [1, 2, 3]}
>>> d['two'] = 99
>>> d
{1: 'hello', 'two': 99, 'blah': [1, 2, 3]}

>>> d[7] = 'new entry'
>>> d
{1: 'hello', 7: 'new entry', 'two': 99, 'blah': [1, 2, 3]}

Entries can be changed by assigning to
that entry

• Assigning to a key that does not exist
adds an entry

Dictionaries: Deleting Elements

 The del method deletes an element from a
dictionary

>>> d
{1: 'hello', 2: 'there', 10: 'world'}
>>> del(d[2])
>>> d
{1: 'hello', 10: 'world'}

Iterating over a dictionary

>>>address={'Wayne': 'Young 678', 'John': 'Oakwood 345',
'Mary': 'Kingston 564'}

 >>>for k in address.keys():
 print(k,":", address[k])

Wayne : Young 678
John : Oakwood 345
Mary : Kingston 564
>>>

>>> for k in sorted(address.keys()):
 print(k,":", address[k])

John : Oakwood 345
Mary : Kingston 564
Wayne : Young 678
>>>

Copying Dictionaries and Lists

 The built-in
list function
will copy a list

 The dictionary
has a method
called copy

>>> l1 = [1]
>>> l2 = list(l1)
>>> l1[0] = 22
>>> l1
[22]
>>> l2
[1]

>>> d = {1 : 10}
>>> d2 = d.copy()
>>> d[1] = 22
>>> d
{1: 22}
>>> d2
{1: 10}

Data Type Summary

 Lists, Tuples, and Dictionaries can store
any type (including other lists, tuples,
and dictionaries!)

 Only lists and dictionaries are mutable
 All variables are references

Integers: 2323, 3234L
Floating Point: 32.3, 3.1E2
Complex: 3 + 2j, 1j
Lists: l = [1,2,3]
Tuples: t = (1,2,3)
Dictionaries: d = {‘hello’ : ‘there’, 2 : 15}

