
Chapter 2: Linked List

Abstract

- A collection of items accessible one after another beginning at the head and ending at the tail is called a list.
- A <u>linked list</u> is a data structure consisting of a group of nodes which together represent a sequence.
- Under the simplest form, each node is composed of a data and a reference (in other words, a link) to the next node in the sequence.

Why: Linked List

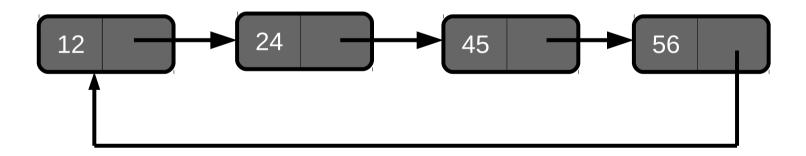
Linked List Vs Arrays

- Elements can be inserted into linked lists indefinitely, while an array will eventually either fill up or need to be resized.
- Further memory savings can be achieved.
- Simple example of a persistent data structure.
- On the other hand, arrays allow random access, while linked lists allow only sequential access to elements.
- Another disadvantage of linked lists is the extra storage needed for references, which often makes them impractical for lists of small data items such as characters or boolean values.

Linked List: Types


Singly Linked List

- The simplest kind of linked list is a singly-linked list (or slist for short), which has one link per node.
- This link points to the next node in the list, or to a null value or empty list if it is the final node.


Doubly Linked List

- A variant of a linked list in which each item has a link to the previous item as well as the next.
- This allows easily accessing list items backward as well as forward and deleting any item in constant time, also known as two-way linked list, symmetrically linked list.


Singly Circular Linked List

Similar to an ordinary singly-linked list, except that the next link of the last node points back to the first node.

Doubly Linked List

- A variant of a linked list in which each item has a link to the previous item as well as the next.
- This allows easily accessing list items backward as well as forward and deleting any item in constant time, also known as two-way linked list, symmetrically linked list.

Doubly Circular Linked List

Similar to a doubly-linked list, except that the previous link of the first node points to the last node and the next link of the last node points to the first node.

Example 34 56

TradeOffs

Double Linked List Vs Single Linked List

Single Linked List	Double Linked List
Less space per node	More space per node
Elementary operations Less expensive	Elementary operations more expensive
Bit difficult to manipulate	Easier to manipulate

Circular Linked List Vs Linear Linked List

- Allows quick access to the first and last records through a single pointer (the address of the last element).
- Their main disadvantage is the complexity of iteration, which has subtle special cases.

Operations: Linked List

- 1. Creation
- 2. Insertion
- 3. Deletion
- 4. Searching
- 5. Sorting
- 6. Listing
- 7. Destroying etc...

Applications

Used in the implementation of other Data Structures

- 1. Stacks
- 2. Queues