Scott Smith

Advanced Image Processing March 15, 2011

Speeded-Up Robust Features

SURF

Overview

- Why SURF?
- How SURF works
 - Feature detection
 - Scale Space
 - Rotational invariance
 - Feature vectors
- SURF vs Sift

Assumptions

- We are only looking at grey scale images
- We will only discuss 2-d (there are 3-d extensions)

SURF Applications

- Essentially, the same as SIFT
- Generate Feature Vectors
 - Interest Point descriptor
- Registration points
- Feature detection
- Feature matching
 - Object identification

SURF Roadmap

- 1. Find image interest points
 - Use determinant of Hessian matrix
- 2. Find major interest points in scale space
 - Non-maximal suppression on scaled interest point maps
- 3. Find feature "direction"
 - We want rotationally invariant features
- 4. Generate feature vectors

SURF Roadmap

- 1. Find image interest points
 - Use determinant of Hessian matrix
- 2. Find major interest points in scale space
 - Non-maximal suppression on scaled interest point maps
- 3. Find feature "direction"
 - We want rotationally invariant features
- 4. Generate feature vectors

Hessian Matrix for feature detection

 A Hessian matrix in 2-dimensions consists of a 2 x 2 matrix containing the secondorder partial derivatives as follows:

$$\begin{bmatrix} \frac{\partial I^2}{\partial x^2} & \frac{\partial I^2}{\partial x \partial y} \\ \frac{\partial I^2}{\partial y \partial x} & \frac{\partial I^2}{\partial y^2} \end{bmatrix}$$

Symmetric matrix

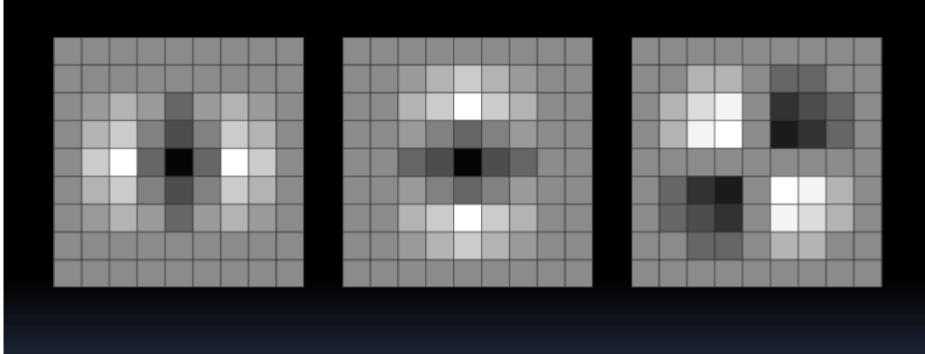
Hessian Matrix for feature detection

- For any square matrix, the determinant of the matrix is the product of the eigenvalues
- For the Hessian matrix, the eigenvectors form an orthogonal basis showing the direction of curve (gradient) of the image
 - If both eigen values are positive, local min
 - If both eigen values are negative, local max
 - If eigen values have mixed sign, saddle point

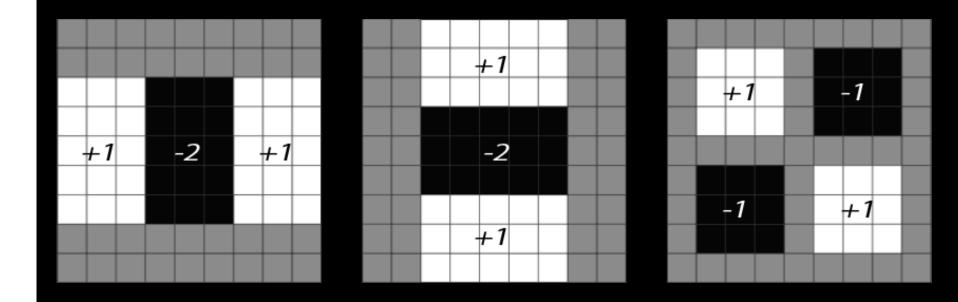
Hessian Matrix for feature detection

- Therefore, if the product of the eigen values is positive, then they were either both positive or both negative and we are at a local extremum
- Typically, we apply some kind of thresholding to the determinant value so we only detect major features.
 - You can control the number of interest points this way
- Some algorithms save the trace of the hessian to remember whether a min or a max

Laplacian of Gaussian (9x9 filters)

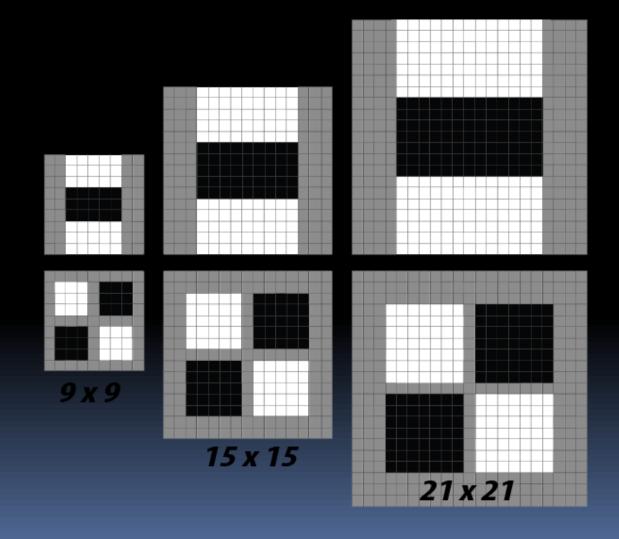


LoG Approximations



- D_{xx} D_{yy} D_{xy}
- In practice, these approximations are very close to LoG.
- Need to normalize for filter size
- We can take advantage of the large areas of constant weighting to speed up the algorithm.

How filters grow



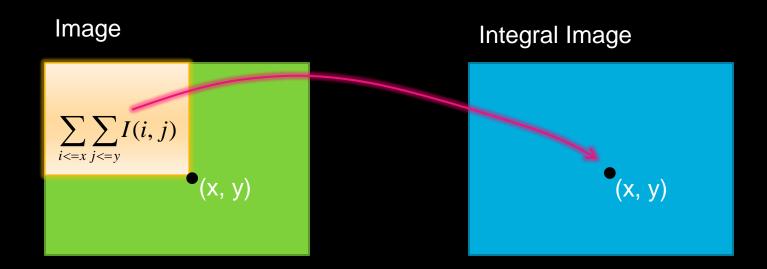
Integral Image - Overview

- Goal of Integral Images
 - Fast computation of box convolutions
 - We need a fast way to compute the intensities for any rectangle within the image which isn't sensitive to rectangle size
- Computation time is independent of the size of the filter!
- Can be used for any box filter application
- Originally from "Rapid object detection using a boosted cascade of simple features" by Viola and Jones (2001)

Integral Image – How it works

- Create an "Integral Image"
 - An Integral image has the same size as the image you are analyzing
 - The value of the <u>integral image</u> at any point (x, y) is the sum of the intensity values for all points in the <u>image</u> with location less than or equal to (x, y)
- Use the integral image to compute the intensities for any rectangle in the image

Integral Image – Creating

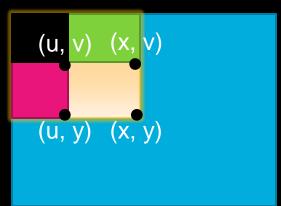


The value of the Integral Image at point (x, y) is the sum of all of the intensities in the gold box. An integral image can be created in a "recursive" manner to minimize computations. Start at the top-left corner and work down a row at a time.

Integral Image – Using it

Image (u,v)

Integral Image (II)



The sum of the intensities in the gold box is simply:

$$II(x, y) - II(x, v) - II(u, y) + II(u, v)$$

Integral Images and Hessian Matrices

- Recall that the Hessian box filters consisted of squares with a common weight
- We can use the Integral Image to get the sum of the intensities for the square, multiply by the weight factor and add the resulting sums for the box filter together.
 - Don't forget to normalize for filter size
- The matrix with the thresholded determinants for a particular filter size is called the "blob response map"

Blob Response

• Blob Response at location $x = (x, y, \sigma)$

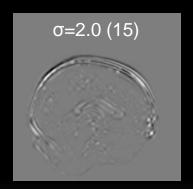
$$\det(H_{approx}) = D_{xx}D_{yy} - (.9D_{xy})^2$$

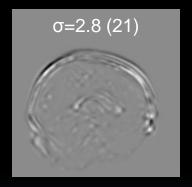
• For a 9 x 9 matrix, $\sigma = 1.2$; In general:

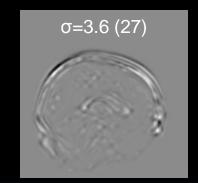
$$\sigma = (filtersize/9)*1.2$$

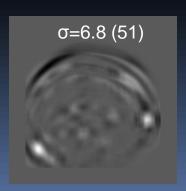
Corpus Callosum Blob Response

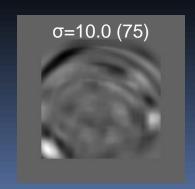
Maps











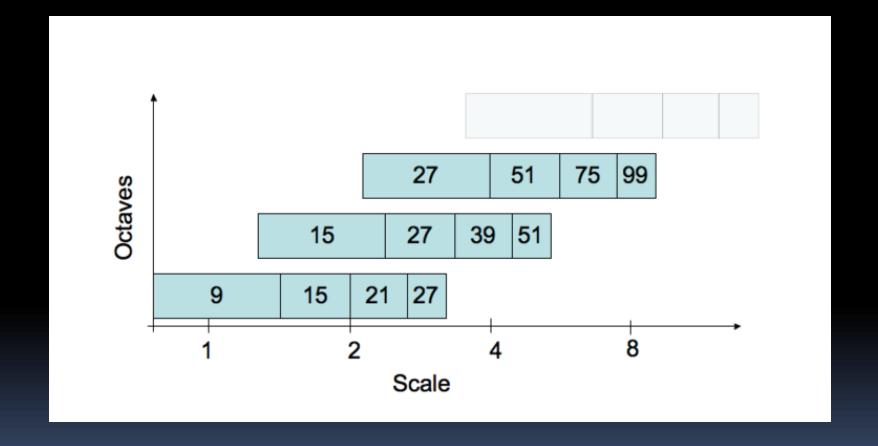
SURF Roadmap

- 1. Find image interest points
 - Use determinant of Hessian matrix
- 2. Find major interest points in scale space
 - Non-maximal suppression on scaled interest point maps
- 3. Find feature "direction"
 - We want rotationally invariant features
- 4. Generate feature vectors

Octaves

- An octave is defined as a series of filters which have a range which approximates a doubling of scale.
- Bay computes 3 octaves with the option of going to 4 octaves
- The octaves overlap to ensure full coverage of each scale

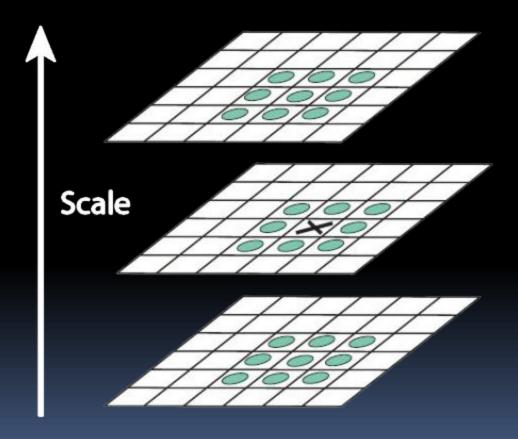
Octaves



Finding the main features

- Non-maximal suppression is applied
- We do normal 3x3 non-maximal suppression within the same blob response map
- We also do non-maximal suppression with the blob response map above and below the image in scale space for each octave
 - This means that we only use the middle two blob response maps for each octave

Non-Maximal Suppression in 3D



Interpolate the interest points

 Because of the coarse scale of the scale space, we need to interpolate the interest point to arrive at the correct scale (σ); express the hessian as a Taylor expansion

$$H(\mathbf{x}) = H + \frac{\partial H}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 H}{\partial \mathbf{x}^2} \mathbf{x}$$

Differentiating and set to 0 gives

$$\hat{x} = -\frac{\partial^2 H}{\partial \mathbf{x}^2}^{-1} \frac{\partial H}{\partial \mathbf{x}}$$

Interpolate the interest points

$$\frac{\partial^2 H}{\partial \mathbf{x}^2} = \begin{bmatrix} d_{xx} & d_{yx} & d_{sx} \\ d_{xy} & d_{yy} & d_{sy} \\ d_{xs} & d_{ys} & d_{ss} \end{bmatrix}$$

$$\frac{\partial H}{\partial \mathbf{x}} = \left[\begin{array}{c} d_x \\ d_y \\ d_s \end{array} \right].$$

SURF Roadmap

- 1. Find image interest points
 - Use determinant of Hessian matrix
- 2. Find major interest points in scale space
 - Non-maximal suppression on scaled interest point maps
- 3. Find feature "direction"
 - We want rotationally invariant features
- 4. Generate feature vectors

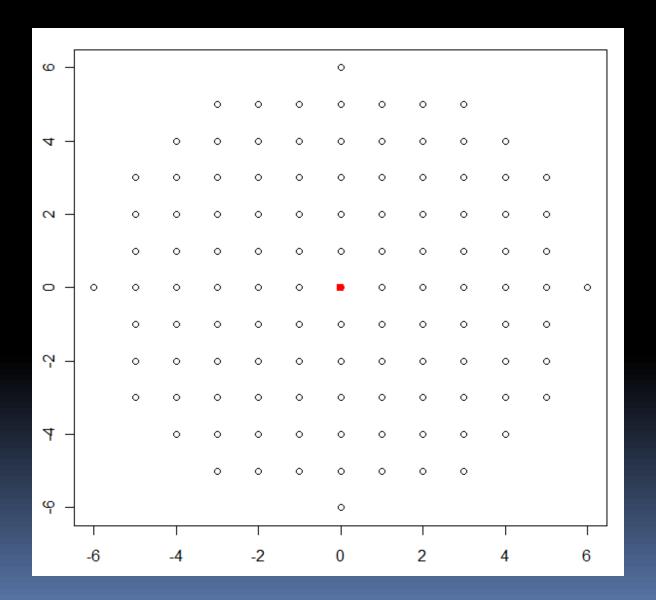
Haar Transforms

- We use Haar Transforms to assess the primary direction of the feature.
- The intuition is that they give you a sense of the direction of the change in intensity.
 - They are resistant to overall luminance changes
- Simple box filters (=>Integral images)

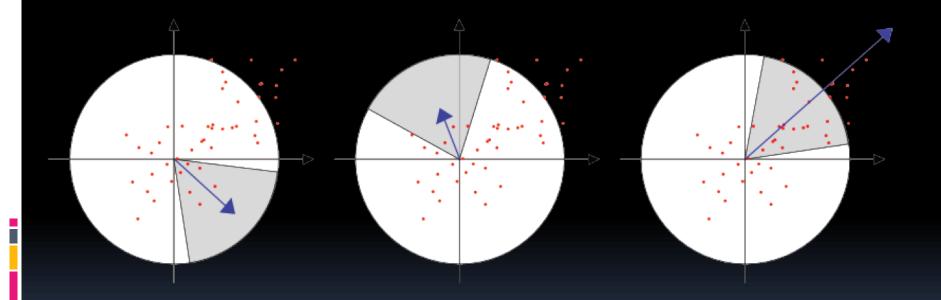
Computing the rotation

- For each feature
 - Look at pixels in a circle of 6*σ radius
 - Compute the x and y Haar transform for each point
 - Use the resulting values as x and y coordinates in a Cartesian map.
 - Weight each point with a Gaussian of 2*σ based on the distance from the interest point.
 - Probable a wedge of $\pi/3$ radians around the circle.
 - Choose direction of maximum total weight

Circle Points



Rotation



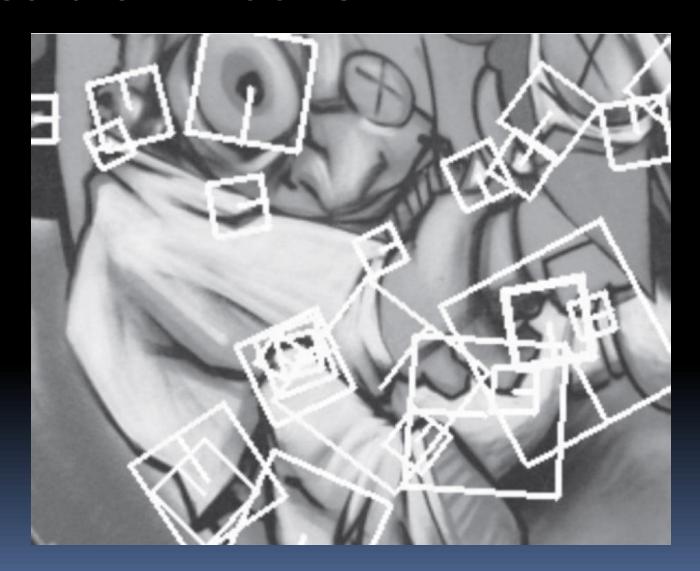
SURF Roadmap

- 1. Find image interest points
 - Use determinant of Hessian matrix
- 2. Find major interest points in scale space
 - Non-maximal suppression on scaled interest point maps
- 3. Find feature "direction"
 - We want rotationally invariant features
- 4. Generate feature vectors

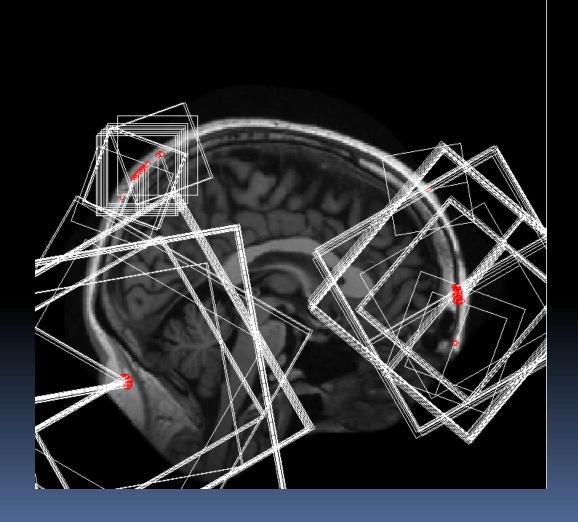
Computing Feature Vectors

- A square descriptor window is constructed with a size of 20*σ centered on each interest point and orientation based on the derived rotation
- Divide the descriptor window into 4 x 4 sub-regions
 - Each sub-region is 5*σ square
 - Haar wavelets of size 2*σ are computed for 25 regularly spaced points in each sub-region
 - dx and dy are computed at each point in the rotated direction (=> no integral images ☺)

Feature Windows



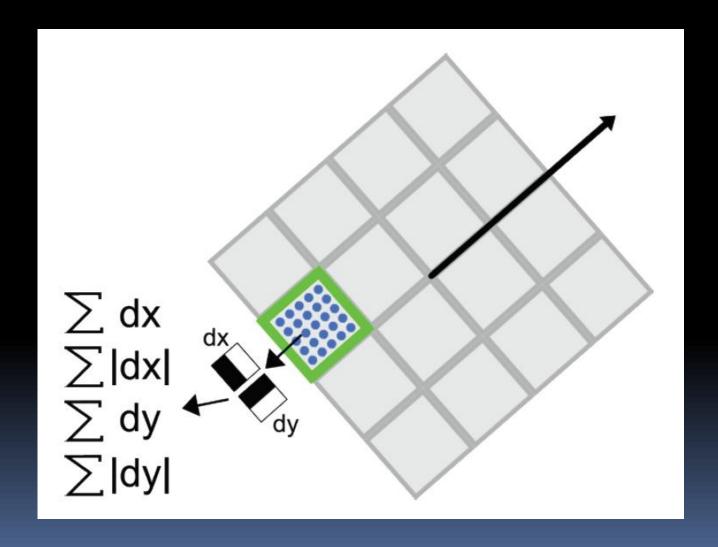
Feature Windows



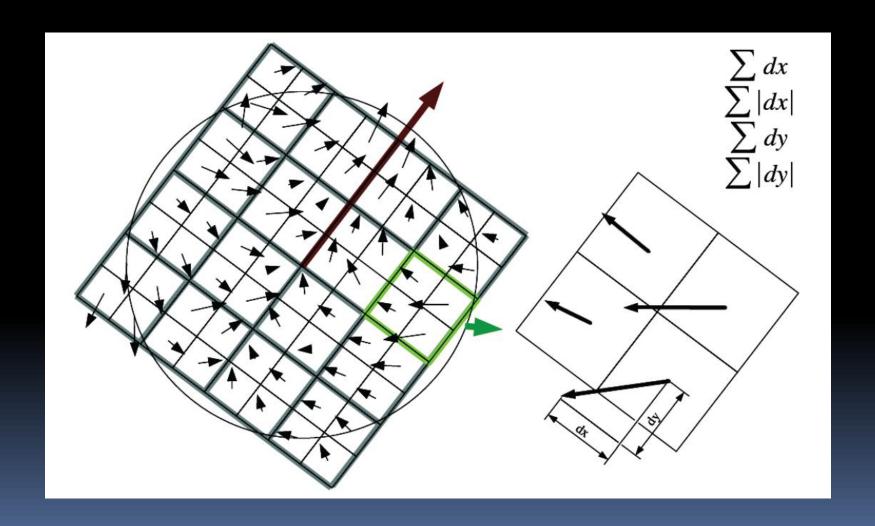
Computing Feature Vectors

- For each of the 16 sub-regions we compute 4 values
 - Sum of dx
 - Sum of dy
 - Sum of abs(dx)
 - Sum of abs(dy)
- Feature vector is a 64 dimensional vector consisting of the above 4 values for each of the 16 sub-regions

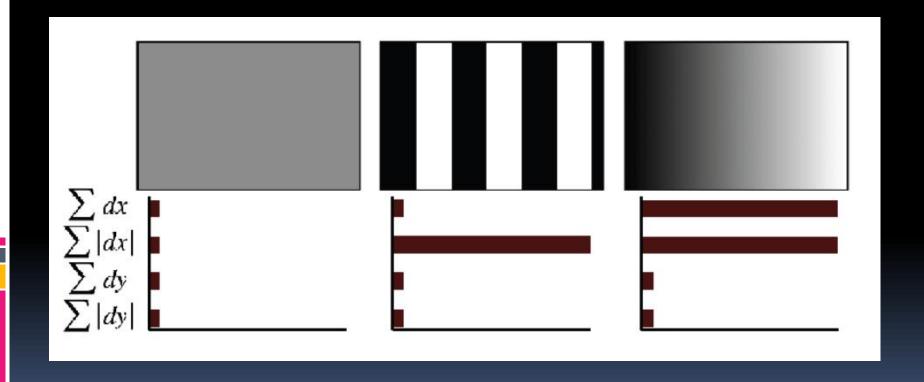
Feature Vectors



Feature Vectors



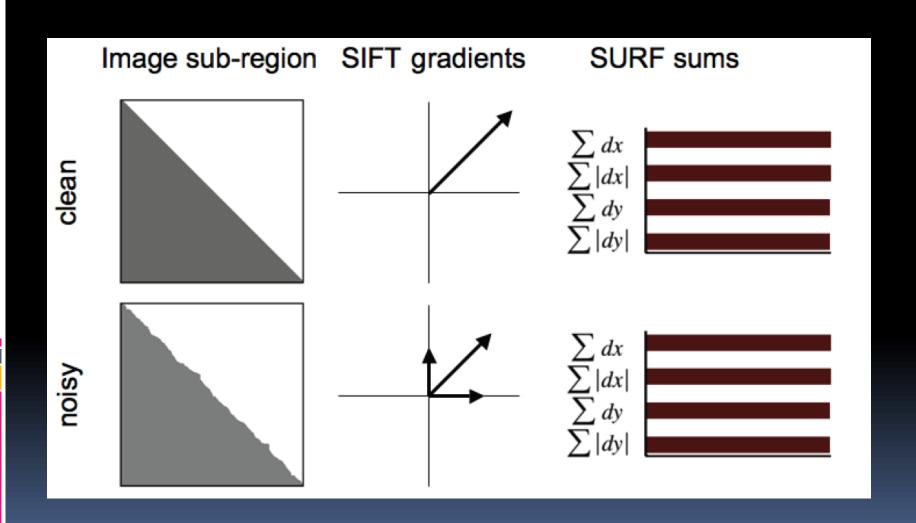
Feature Vectors



SURF vs SIFT

- SURF is roughly 3-5 times faster than SIFT
 - More resilient to noise than SIFT.
 - Also, more easily adapted to parallel processing since each Hessian image can be independently generated (unlike SIFT)
- Some loss of accuracy from SIFT in certain situations
 - Authors claim it is minimal
 - Perhaps not as invariant to illumination and viewpoint change as SIFT

SURF vs SIFT with noise



References

- "SURF: Speeded Up Robust Features" –
 H. Bay, et. al., 2006
- "Notes on the OpenSURF library" http://www.chrisevansdev.com/computervision-opensurf.html