Lab 5

Setting Up and Testing a DNS Server in Cisco Packet Tracer

Objective:

- Learn how to set up a DNS server in Cisco Packet Tracer.
- Configure a DNS server to resolve domain names to IP addresses.
- Test DNS functionality by using web browsers and command-line tools.

Step-by-Step Instructions:

Step 1: Open Cisco Packet Tracer

• Launch the Cisco Packet Tracer application and familiarize yourself with the interface.

Step 2: Add Devices to the Workspace

- 1. Go to the **End Devices** section and add the following:
 - 1 DNS Server (drag a generic server from the list and rename it to "DNS Server").
 - o **3 PCs** (PC1,PC2 and PC3).
- 2. Go to the **Network Devices** section and add:
 - o 1 Switch (e.g., 2960).

Step 3: Connect Devices

- 1. Use Copper Straight-Through cables to connect:
 - o **DNS Server** to the switch.
 - o **PC1** to the switch.
 - o PC2 to the switch.

Step 4: Configure the IP Addresses

1. **DNS Server**:

o Click on the server, go to the **Config** tab, and assign:

IP Address: 192.168.0.1
 Subnet Mask: 255.255.255.0
 Default Gateway: 192.168.0.1.

■ **DNS**: 192.168.0.1

Enable DHCP from Lab 4.

Step 5: Configure the DNS Server

- 1. Click on the **DNS Server**, go to the **Services** tab, and select **DNS**.
- 2. Turn the DNS service **ON** by toggling the switch.
- 3. Add DNS records in the **DNS Table**:
 - o Name: www.google.com
 - o Address: 192.168.0. 1
 - o Click Add.

Add another record:

Name: www.facebook.comAddress: 192.168.0.1

Click Add.

Step 6: Test the DNS Setup

1. Testing with Ping:

o Go to PC1, open the Command Prompt in the Desktop tab.

- o Type ping www.google.com and press **Enter**. You should see replies from 192.168.0. 1.
- o Type ping www.google.com to confirm connectivity to 192.168.0.1.

2. Testing with Web Browser:

- o On PC1, open the Web Browser in the Desktop tab.
- o Type www.google.com in the URL bar and press **Enter**. You should see a successful connection message.
- o On PC2, type www.google.com and check the results.

Conclusion:

In this lab, you've successfully configured a DNS server to resolve domain names to IP addresses. You learned how to:

- Set up a DNS server in Cisco Packet Tracer.
- Configure end devices to use the DNS server for name resolution.
- Test DNS functionality using both ping commands and web browsers.

Lab 6

Configuring a Router with Two Switches in Cisco Packet Tracer

Objective:

- Set up a network with two switches connected to a router.
- Assign IP addresses to devices in two different subnets.
- Configure a router to allow communication between the two subnets (router-on-a-stick configuration).
- Test connectivity using ping and observe packet flow in simulation mode.

Network Topology:

- Router: Connects two switches, each representing a different subnet.
- Switch 1: Connected to PCs in Subnet 1 (192.168.1.0/24).
- Switch 2: Connected to PCs in Subnet 2 (192.168.2.0/24).

Requirements:

- Cisco Packet Tracer
- Basic knowledge of subnetting and routing

Step-by-Step Instructions:

Step 1: Open Cisco Packet Tracer

• Launch the software and start a new project.

Step 2: Add Devices to the Workspace

1. Router:

o Go to Network Devices \rightarrow Routers and drag a router (e.g., 1841) to the workspace.

- 2. Switches:
 - o Go to Network Devices → Switches and add two switches (e.g., 2960 series).
- 3. End Devices:
 - o Go to **End Devices** and add:
 - **3 PCs** for **Switch 1** (PC1, PC2,PC3).
 - **3 PCs** for **Switch 2** (PC4, PC5,PC6).

Step 3: Connect Devices

- 1. Router to Switches:
 - Use Copper Straight-Through cables to connect:
 - Router's **FastEthernet0/0** to Switch 1's **FastEthernet0/1**.
 - Router's FastEthernet0/1 to Switch 2's FastEthernet0/1.
- 2. PCs to Switches:
 - o Connect PC1,PC2 and PC3 to Switch 1 (e.g., ports FastEthernet0/2 and FastEthernet0/3).
 - Connect PC4,PC5 and PC6 to Switch 2 (e.g., ports FastEthernet0/2 and FastEthernet0/3).

Step 4: Configure IP Addresses

- 1. **PC1,PC2 and PC3** (Subnet 1: 192.168.0.1/24):
 - o PC1:
 - **IP Address**: 192.168.0.2
 - Subnet Mask: 255.255.255.0
 - **Default Gateway**: 192.168.0.1
 - o PC2:
 - **IP Address**: 192.168.0.3
 - **Subnet Mask**: 255.255.255.0
 - **Default Gateway**: 192.168.0.1
 - o PC3:
 - **IP Address**: 192.168.0.4
 - **Subnet Mask**: 255.255.255.0
 - **Default Gateway**: 192.168.0.1
- 2. **PC4,PC5 and PC6** (Subnet 2: 192.168.1.1/24):
 - o PC4:
 - **IP Address**: 192.168.1.2
 - **Subnet Mask**: 255.255.255.0
 - Default Gateway: 192.168.1.1
 - o PC5:
 - **IP Address**: 192.168.1.3
 - Subnet Mask: 255.255.255.0
 - **Default Gateway**: 192.168.1.1
 - o PC6:

IP Address: 192.168.1.4
Subnet Mask: 255.255.255.0
Default Gateway: 192.168.1.1

Step 5: Configure the Router

Edit GigabitEthernet0

IP Address: 192.168.0.1

Edit GigabitEthernet1

IP Address: 192.168.1.1

Step 6: Test Connectivity

- 1. Go to **PC1**, open the **Command Prompt** in the **Desktop** tab, and run:
- 2. ping 192.168.0.3
 - o This tests connectivity within Subnet 1 (between PC1 and PC2).
- 3. From **PC1**, run:
- 4. ping 192.168.1.2
 - o This tests connectivity between Subnet 1 and Subnet 2 (router-mediated).
- 5. Similarly, test from **PC4**:
- 6. ping 192.168.1.2

Step 7: Observe Traffic in Simulation Mode

- 1. Switch to **Simulation Mode** in the bottom-right corner of Packet Tracer.
- 2. Generate pings from one subnet to the other (e.g., from PC1 to PC4).
- 3. Observe the flow of packets:
 - o Packets from PC1 reach the router, are routed to the appropriate interface, and arrive at PC4.
 - o This demonstrates inter-subnet routing via the router.

Conclusion:

In this lab, you've set up a router to connect two switches, each representing a different subnet. You configured IP addresses, enabled routing, and tested connectivity. This configuration is the basis of inter-network communication, a core concept in networking.

Extra Tasks:

- 1. Add more PCs to each subnet and test connectivity.
- 2. Configure a **DHCP Server** on the router to dynamically assign IP addresses.
- 3. Explore advanced features like Access Control Lists (ACLs) to restrict communication between subnets.

This lab introduces the practical setup of routers and switches for subnet communication, providing a foundational understanding of routing in networks.