
 1

Generics in VB.net

A generic type is a single programming element that adapts to perform the same

functionality for a variety of data types. When you define a generic class or procedure, you

do not have to define a separate version for each data type for which you might want to

perform that functionality. We can generic methods and generic classes in vb.net. Generics

provide type safety, faster execution and reuse of code for those situations where our

code needs to operate on different data. Generics are equivalent to templates in C++.

Generic Class:

The following example shows a skeleton definition of a generic class.
Public Class ClassName(Of T)

 Public Sub Do(a As T,b As T)
 Dim tempItem As T
 End Sub
End Class

In the preceding skeleton, T is a type parameter, that is, a placeholder for a data

type that you supply when you declare the class. Elsewhere in your code, you can

declare various versions of ClassName by supplying various data types for T . The

following example shows two such declarations.

When we create new

Generic methods:

To develop the motivation for generics, create a new windows project called

“Generics”. Suppose we wanted to write a method to exchange two integers. For this

purpose, we can add a class to the project called GenUtils with the following code in it.

Class GenUtil
 Public Shared Sub Exchange(ByRef a As Integer, ByRef b As Integer)
 Dim temp As Integer = a
 a = b
 b = temp
 End Sub
End Class

 2

To test the exchange method, add a button to the form with a name of btnExchange with

the following code in its handler.

Private Sub btnExchange_Click(ByVal sender As Object, ByVal e As EventArgs)
 Dim x As Integer = 5
 Dim y As Integer = 7
 GenUtil.Exchange(x, y)
 MessageBox.Show("x = " & x.ToString() & " y = " + y.ToString())
End Sub
If you build and run the program and click on the above button, you will see the

following output.

Now what if we wanted to also be able to exchange two doubles, we can overload the

exchange method in the GenUtil class by adding a method that takes two doubles and

exchanges the values as shown below.

Class GenUtil
 Public Shared Sub Exchange(ByRef a As Integer, ByRef b As Integer)
 Dim temp As Integer = a
 a = b
 b = temp
 End Sub
 Public Shared Sub Exchange(ByRef a As Double, ByRef b As Double)
 Dim temp As Double = a
 a = b
 b = temp
 End Sub
End Class

Notice the difference in code in the above two functions is the first two lines in each

function i.e.,
 Public Shared Sub Exchange(ByRef a As Integer, ByRef b As Integer)
 Dim temp As Integer = a

 ….

 Public Shared Sub Exchange(ByRef a As Double, ByRef b As Double)
 Dim temp As Double = a
 …

What if wanted a function also that can exchange two strings, and also that can exchange

two student objects etc.. We can copy and paste the Exchange method and change the

data type of the first two lines in the method. Even though this will work, it requires too

many overloaded copies of the function in a class. Generics solve this problem by having

 3

the developer declare only one method that can operate on any data type (i.e., generic

data type), Modify the GenUtil class to include only one generic exchange method as:

Class GenUtil
 Public Shared Sub Exchange(of T)(ByRef a As T, ByRef b As T)
 Dim temp As T = a
 a = b
 b = temp
 End Sub
End Class

The (of T) after the name of the function simply indicates a generic data type that will be

decided by the compiler depending upon how the method will be invoked. For example,

if some one calles the above method as:
 Private Sub btnExchange_Click(sender As Object, e As EventArgs) Handles
btnExchange.Click
 Dim x As Integer =10
 Dim y As Integer=20
 MessageBox.Show("Before Exchange: "+x.ToString()+" "+y.ToString())
 GenUtil.Exchange(x,y)
 MessageBox.Show("After Exchange: "+x.ToString()+" "+y.ToString())
 End Sub
T in the Exchange method in the GenUtil class will be treated as an int. On the other

hand, if the Exchange method is invoked as:
 Dim x As Double =7.5
 Dim y As Double=3.2
 GenUtil.Exchange(x,y)

T in the Exchange method will become a double. The letter T itself is not a keyword. We

can give the generic type any name we feel like. For example. We could have written the

GenUtil class by replacing the T with MyType as:

Class GenUtil
 Public Shared Sub Exchange(of myType)(ByRef a As myType, ByRef b As myType)
 Dim temp As myType = a
 a = b
 b = temp
 End Sub
End Class
In the calling code, nothing special needs to done i.e., the call to a Generic method

usually appears as if it was a normal method.

Generic Classes:

Add a class called MyGen to the project with the following code.

 4

Class MyGen(Of T1, T2)
 Public Property A As T1
 Public Property B As T2
 Public Overrides Function ToString() As String
 Return A.ToString() & " : " & B.ToString()
 End Function
End Class
As you can see from the above code, it uses two generic types T1 and T2 that the class

will use. The class then declares two data members of the types T1 and T2 respectively.

To test creating objects of the above generic class, add a button called btnGenericClass to

the form with the following test code in it.

 Private Sub btnGenericClass_Click(sender As Object, e As EventArgs) Handles
btnGenericClass.Click
 'Dim mg As MyGen(Of Integer, Single) = New MyGen(Of Integer, Single)()
 Dim mg = New MyGen(Of Integer, Single)()
 mg.A = 5
 mg.B = 3.75F
 MessageBox.Show(mg.ToString())
 End Sub
Notice how an object of a generic class is created i.e., within the (), the caller has to

indicate the two data types the generic class expects to use.
 Dim mg AS MyGen(Of Integer, Single) = new MyGen(Of Integer, Single)()

To demonstrate a more useful example of a generic class, we can create a class that can

initialize an array of any reference type. If you recall, creating an array of a reference

type is a two step process where in the first step, we create an array of references and in

the second step, we create the objects in the array e.g., to create an array of Students, the

code will look like:

Private Sub btnStudentArray_Click(sender As Object, e As EventArgs) Handles
btnStudentArray.Click
 Dim stArr = New Student(5){}
 For i As Integer = 0 To stArr.Length
 stArr(i)=New Student()
 Next
 End Sub
If we were to create an array of Employees, the code will look as:
 Dim stArr = New Employee(5){}
 For i As Integer = 0 To stArr.Length
 stArr(i)=New Employee()
 Next

Since creating an array of reference types is needed quite often, we could create a generic

class with a method in it that allows proper creating of an array of any reference type. To

see this, add a class to the project called GenArr with the following code in it.

Class GenArr
 Public Shared Function InitArray(Of T As New)(ByVal size As Integer) As T()
 Dim arr As T() = New T(size - 1) {}
 For i As Integer = 0 To size - 1
 arr(i) = New T()
 Next

 5

 Return arr
 End Function
End Class
The statement Of T As New in the above function indicates that the T has to be creatable

with a new keyword (as in creating an object of a class using the new keyword).

Add a class called Student to the project with the following code in it.

Public Class Student
 Public Property FirstName As String
 Public Property LastName As String
 Public Property Id As Integer
 Public Property Test1Score As Integer
 Public Property Test2Score As Integer
 Public Overrides Function ToString() As String
 Return FirstName & " " & LastName & " " + Id.ToString() & " " +
Test1Score.ToString() & " " + Test2Score.ToString()
 End Function
End Class

To the test the above generic method, add a button called btnInitArray with the following

code in its handler.

 private void btnInitArray_Click(object sender, EventArgs e)
 {
 Dim stArr =GenArr.InitArray(Of Student)(5)' New Student(5){}
 MessageBox.Show(STArr.Length.ToString())
 }

Running he program and clicking on the above button produces the following output.

What is we wanted to be able to find the maximum test score 1 from an array of Students,

or finding an Emplyee with the highest salaray from an array of employees. To achieve

this, we can develop a generic method that can determine the maximum of any generic

array of objects. However, for this method to be able the determine the maxmum, the

class whose array is being created must provide an implementation of the IComparable

interface. Modify the GenArr class to include a generic FindMax method as shown

below.

 Public Class GenArr
 Public Shared Function InitArray(Of T As New)(ByVal size As Integer) As T()
 Dim arr As T() = New T(size - 1) {}
 For i As Integer = 0 To size - 1
 arr(i) = New T()

 6

 Next
 Return arr
 End Function
 Public Shared Function FindMax(Of T As IComparable)(ByVal arr As T()) As T
 Dim max As T = arr(0)
 For i As Integer = 1 To arr.Length-1
 If arr(i).CompareTo(max) = 1 Then max = arr(i)
 Next
 Return max
 End Function
End Class
If we wanted to be able to determine the Student with the maximum TestScore1 from an

array of Students, the Student class must implement the IComparable interface as

shown below.

Public Class Student
 Implements IComparable
 Public Property FirstName As String
 Public Property LastName As String
 Public Property Id As Integer
 Public Property Test1Score As Integer
 Public Property Test2Score As Integer
 Public Overrides Function ToString() As String
 Return FirstName & " " & LastName & " " + Id.ToString() & " " +
Test1Score.ToString() & " " + Test2Score.ToString()
 End Function

 Public Function CompareTo(obj As Object) As Integer Implements
IComparable.CompareTo
 Dim res As Integer = 0
 Dim st As Student = Nothing
 If TypeOf obj Is Student Then
 st = CType(obj, Student)
 res = Me.Test1Score.CompareTo(st.Test1Score)
 End If
 Return res
 End Function
End Class
To test the FindMax generic method, add a button to the form called

btnFindMaxScoreStudent with the following code in it.

 Private Sub btnStudentArray_Click(sender As Object, e As EventArgs) Handles
btnStudentArray.Click
 Dim stArr = GenArr.InitArray(of Student)(3)
 stArr(0).Id = 12345
 stArr(0).FirstName = "Bill"
 stArr(0).Test1Score = 83
 stArr(1).Id = 12348
 stArr(1).FirstName = "Sally"
 stArr(1).Test1Score = 91
 stArr(2).Id = 12346
 stArr(2).FirstName = "Mark"
 stArr(2).Test1Score = 85
 Dim maxScoreStudent = GenArr.FindMax(of Student)(stArr)
 MessageBox.Show(maxScoreStudent.ToString())

 7

 End Sub

Generic Classes and Interfaces in .Net Library:
There are many generic classes and interfaces in the library especially for those cases where

the code may need to operate on different data. For example, for sorting purposes, there

are generic equivalents of the IComparable and IComparer interfaces.

Exercise: Convert the Icomparable and Icomparer implementations of the Student class to

generic versions of these interfaces.

Solution:

The modified Student class that implements IComparable(of T)appears as:

 Public Class Student
 Implements IComparable(Of Student)
 Public Property FirstName As String
 Public Property LastName As String
 Public Property Id As Integer
 Public Property Test1Score As Integer
 Public Property Test2Score As Integer
 Public Overrides Function ToString() As String
 Return FirstName & " " & LastName & " " + Id.ToString() & " " +
Test1Score.ToString() & " " + Test2Score.ToString()
 End Function
 Public Function CompareTo(ByVal other As Student) As Integer Implements
IComparable(Of Student).CompareTo
 Return Me.Test1Score.CompareTo(other.Test1Score)
 End Function
End Class
Notice how efficient the CompareTo function in the above implementation of

IComparable(of Student) is as compared the previous non generic IComparable that

required type checking and conversion at run time.

For the FindMax generic function to work with the new Student class

IComparable<Student< implementation, we will need to modify the GenArr class as

(modification needed is shown in bold):

class GenArr
{
 Public Shared Function FindMax(Of T As IComparable(Of T))(ByVal arr As T()) As T
 Dim max As T = arr(0)
 For i As Integer = 1 To arr.Length
 If arr(i).CompareTo(max) = 1 Then max = arr(i)
 Next
 Return max

 8

 End Function
}

Implementation of Icomparer(of T) for Student class:
Add a class called MyEnums with the following code in it.

 Public Enum SORTFIELD As Integer
 FIRSTNAME
 LASTNAME
 ID
 TEST1SCORE
 TEST2SCORE
 End Enum

 Public Enum SORTDIR As Integer
 ASC
 DESC
 End Enum

Add a class called StudentComparer with the following code in it. This class implements

Icomparer<Student> interface. Notice the Compre method in the interface does not

require any type checking and conversion of the two parameters as was needed in the non

generic IComparer interface implementation.
Class StudentComparer
 Implements IComparer(Of Student)
 Public Property SortFields As SORTFIELD = SORTFIELD.ID
 Public Property SortDirs As SORTDIR = SORTDIR.ASC
 Public Function Compare(ByVal x As Student, ByVal y As Student) As Integer

Implements IComparer(Of Student).Compare
 Dim res As Integer = x.CompareTo(y, SortFields)
 If SortDirs = SORTDIR.DESC Then res = -1 * res
 Return res
 End Function
End Class
Modify the Student class to provide the CompareTo(Student st, SORTFIELD sField)

method as:

Public Class Student
 Implements IComparable(of Student)
 Public Property FirstName As String
 Public Property LastName As String
 Public Property Id As Integer
 Public Property Test1Score As Integer
 Public Property Test2Score As Integer

 Public Overrides Function ToString() As String
 Return FirstName & " " & LastName & " " + Id.ToString() & " " +
Test1Score.ToString() & " " + Test2Score.ToString()
 End Function
 Public Function CompareTo(ByVal st As Student, ByVal sField As SORTFIELD) As
Integer
 Dim res As Integer = 0
 Select Case sField
 Case SORTFIELD.FIRSTNAME
 res = FirstName.CompareTo(st.FirstName)
 Case SORTFIELD.LASTNAME

 9

 res = LastName.CompareTo(st.LastName)
 Case SORTFIELD.ID
 res = Me.Id.CompareTo(st.Id)
 Case SORTFIELD.TEST1SCORE
 res = Me.Test1Score.CompareTo(st.Test1Score)
 Case SORTFIELD.TEST2SCORE
 res = Me.Test2Score.CompareTo(st.Test2Score)
 End Select

 Return res
 End Function
 Public Function CompareTo(ByVal other As Student) As Integer Implements
IComparable(Of Student).CompareTo
 Return Me.Test1Score.CompareTo(other.Test1Score)
 End Function
End Class
To test the IComparer (of T(implementation, add a button to the form with a name of

btnComparerGeneric with the following code in the button handler.

Private Sub btnIComparerGeneric_Click(sender As Object, e As EventArgs) Handles
btnIComparerGeneric.Click
 Dim STList As List(Of Student) = New List(Of Student)
 Dim s1 As Student = New Student With {
 .FirstName = "Bil",
 .LastName = "Baker",
 .Test1Score = 85,
 .Test2Score = 91,
 .Id = 12345
 }
 STList.Add(s1)
 Dim s2 As Student = New Student() With {
 .FirstName = "Sally",
 .LastName = "Simpson",
 .Test1Score = 89,
 .Test2Score = 93,
 .Id = 12348
 }
 STList.Add(s2)
 Dim s3 As Student = New Student() With {
 .FirstName = "Mark",
 .LastName = "Williams",
 .Test1Score = 81,
 .Test2Score = 87,
 .Id = 12347
 }
 STList.Add(s3)
 Dim s4 As Student = New Student() With {
 .FirstName = "James",
 .LastName = "Jacobs",
 .Test1Score = 80,
 .Test2Score = 77,
 .Id = 12346
 }
 STList.Add(s4)
 Dim sc As StudentComparer2 = New StudentComparer2
 sc.SortFields = SORTFIELD.TEST2SCORE
 sc.SortDirs = SORTDIR.DESC

 10

 STList.Sort(sc)
 Dim out1 As String = ""
 For Each st As Student In STList
 out1 = (out1 + (st.ToString + "" & vbLf))
 Next
 MessageBox.Show(out1)
 sc.SortFields = SORTFIELD.TEST2SCORE
 sc.SortDirs = SORTDIR.ASC
 STList.Sort(sc)
 out1 = ""
 For Each st As Student In STList
 out1 = (out1 + (st.ToString + "" & vbLf))
 Next
 MessageBox.Show(out1)
 End Sub

If you run the program and click on the above button, you will see the following output.

The above test code uses List which is generic equivalent of the ArrayList class. List is

preferred over ArrayList as it gives us type safety at compile time, and thus results in

faster execution as well. For example, if you declare a List of Students as:

 Dim STList = new List(of Student)();

If you try to add a type other than Student to the STList (that is not derived from

Student), you will get a compile time error.

Just like the List is the generic equivalent of the ArrayList class, similarly Dictionary is

the generic equivalent of the Hashtable class in .Net library.

To demonstrate the use of Dictionary, add a button to the form called btnDictionary with

the following code in its handler.

 Private Sub btnDictionary_Click(sender As Object, e As EventArgs)
Handles btnDictionary.Click
 Dim DTable As Dictionary(Of Integer, Student2) = New Dictionary(Of
Integer, Student2)

 Dim s1 As Student2 = New Student2 With {
 .FirstName = "Bil",
 .LastName = "Baker",
 .Test1Score = 85,
 .Test2Score = 91,
 .Id = 12345
 }

 11

 DTable.Add(s1.Id, s1)
 Dim s2 As Student2 = New Student2() With {
 .FirstName = "Sally",
 .LastName = "Simpson",
 .Test1Score = 89,
 .Test2Score = 93,
 .Id = 12365
 }
 DTable.Add(s2.Id, s2)
 Dim id As Integer = 12365
 Try
 Dim st As Student2 = DTable(id)
 MessageBox.Show(st.ToString)
 Catch ex As KeyNotFoundException
 MessageBox.Show("Student does not exist")
 End Try
 End Sub

