Time: 3 Hour Final Exam

Q1/Design a full adder using two half adders and one OR Gate.

Q2/Design 4 bit PISO.

Drawing any one of follow is correct

Time: 3 Hour Final Exam

Q3/ Design a combinational circuit whose input is a 3-bit number and whose output is the 2's complement of the input number.

QA_1	A ₂	A ₃	F ₁	F ₂	F ₃	F ₄
QA1	7-2	Λ3	'1	1 2	13	14
0	0	0	1	0	0	0
0	0	1	0	1	1	1
0	1	0	0	1	1	0
0	1	1	0	1	0	1
1	0	0	0	1	0	0
1	0	1	0	0	1	1
1	1	0	0	0	1	0
1	1	1	0	0	0	1

 $F_1 = \overline{A_1} \, \overline{A_2} \, \overline{A_3}$

 F_1

Time: 3 Hour Final Exam

 F_{3} $\boxed{1}$ $\boxed{1}$ T_{3} $\boxed{1}$ $\boxed{1}$

 $F_3=A_2{\displaystyle \bigoplus} A_3$

 F_4 $\boxed{\begin{array}{c|c} 1 & 1 \\ \hline & 1 & 1 \\ \hline & 1 & 1 \\ \hline & F_4 = A_3 \\ \end{array}}$

Q4/Answer **ONE** branch only

A. Design 8 to 1 Multiplexer from 4 to 1 multiplexes and 2 to 1 Multiplexer.

Time: 3 Hour Final Exam

Q5/ A combinational circuit is defined by the following three Boolean functions

$$F_1(A, B, C) = \sum m(0,3,4)$$

$$F_2(A, B, C) = \sum m(1,2,7)$$

$$F_3(A, B, C) = \prod M(0,1,2,4)$$

Implement the circuit with a decoder and external OR gates.

Time: 3 Hour Final Exam

Q6/

1.
$$F(W, X, Y, Z) = \sum m(0,1,2,4,5,6,8,9,12,13,14)$$

2.
$$F = \overline{A}\overline{B}\overline{C} + \overline{B}C\overline{D} + A\overline{B}\overline{C} + \overline{A}BC\overline{D}$$

Time: 3 Hour Final Exam

3. $F(W, X, Y, Z) = \sum m(4,6,7,8,12,15), d(W, X, Y, Z) = \sum m(2,3,5,10,11,14)$

$$F(w, x, \overline{y, z}) = \overline{y} + x\overline{z} + w\overline{z}$$

$$F(w, x, y, z) = y + \overline{w}x + w\overline{z}$$

B- Simplify the Boolean Function F and implemented it with NAND and NOR gates

$$F = A\overline{C} + ACE + AC\overline{E} + \overline{A}C\overline{D} + \overline{A}\overline{D}\overline{E}$$